

Successful test-firing of first Long-range Hypersonic Missile

Published On: 18-11-2024

Context:

India achieved a significant milestone with the successful test-firing of its first *Long-range Hypersonic Missile* off the Odisha coast. This development marks India as the fourth country, after the US, Russia, and China, to possess such advanced hypersonic technology.

Key Features of the Test:

- Range: The missile has a range of over 1500 kilometers.
- Technologies Demonstrated:
- Aerodynamic Configuration: To ensure stability and control during hypersonic maneuvers.
- *Scramjet Propulsion*: This allows ignition and sustained combustion at hypersonic speeds, using the vehicle's forward motion to compress incoming air.
- *Thermo-Structural Characterization*: Ensures the missile can withstand the extreme heat and pressure of hypersonic flight.
- Separation Mechanism: Effective at high velocities, ensuring reliable deployment during flight.

Hypersonic Technology:

Hypersonic missiles are capable of reaching speeds above Mach 5 (five times the speed of sound). Their extreme velocity and ability to maneuver mid-flight make them particularly difficult to detect or intercept, posing significant strategic advantages.

India's Existing Missile Systems:

India already has a robust array of missile systems, including:

- **AKASH** (Surface-to-Air Missiles)
- **BRAHMOS** (Long-Range Supersonic Cruise Missiles)
- AGNI (Long-Range Ballistic Missiles)
- **ASTRA** (Air-to-Air Missiles)
- NAG (Anti-Tank Guided Missiles)

The successful development of hypersonic missiles adds to India's defense capabilities, further enhancing its deterrence and strategic position.

DRDO Overview and Structure:

• **Formation**: DRDO was established in 1958 by merging the Technical Development Establishments (TDEs) of the Indian Army, the Directorate of Technical Development and Production (DTDP), and the Defence Science Organisation (DSO).

Kamaraj IAS Academy

Plot A P.127, AF block, 6 th street, 11th Main Rd, Shanthi Colony, Anna Nagar, Chennai, Tamil Nadu 600040 Phone: **044** 4353 9988 / 98403 94477 / Whatsapp: **09710729833**

- Leadership: DRDO is headed by the Secretary, Department of Defence R&D, and the Director General (DG), assisted by Chief Controllers in various technology domains.
- **Technology Clusters**: DRDO has 7 technology clusters focusing on different defense areas:
- 1. **Aeronautics**: Unmanned aerial vehicles, avionics, combat aircraft (e.g., LCA Tejas, UAVs Lakshya, Nishant).
- 2. Missiles and Strategic Systems: Strategic and tactical missiles (e.g., Agni, Prithvi, BrahMos).
- 3. Naval Systems and Materials: Sonars, torpedoes, submarines, naval materials.
- 4. Micro Electronics and Computational Systems: Radars, avionics, AI, cyber systems.
- 5. Armament and Combat Engineering: Armaments, ammunition, tanks (e.g., Arjun tank, Pinaka MBRL).
- 6. **Electronics and Communication Systems**: Military electronics, communication systems, sensors.
- 7. **Life Sciences**: Human factors, NBC protection, life support systems.
- Labs: 53 specialized laboratories across India, collaborating with the Armed Forces, industry, and academia.

DRDO Mandate and Responsibilities:

- Primary Role: Indigenous design, development, and production of weapon systems.
- Key Areas: Missiles, armaments, electronics, combat vehicles, countermeasures, AI, robotics, advanced materials, NBC protection.
- Self-reliance Goal: DRDO focuses on enhancing India's defense ecosystem's technical capabilities, aiming for global competitiveness.

Challenges Faced by DRDO:

1. Delays in Projects:

• Complex projects like LCA Tejas faced long delays due to overambitious scope, technical challenges, and inadequate project management.

1. Dependence on Imports:

• Critical components and systems (e.g., jet engines, semiconductors) are still imported, limiting self-reliance.

1. Budget Constraints:

• DRDO's budget is only about 8% of India's defense budget, hindering long-term investments and R&D capabilities.

1. Technological Gaps:

• India continues to depend on foreign OEMs for critical components and technologies, especially in aerospace and electronics.

1. Jet Engine Development:

• India still imports jet engines for combat aircraft like the LCA Tejas.

1. Semiconductor Shortages:

• India's reliance on imported semiconductors affects self-reliance in electronics and defense systems.

Key Achievements:

• Missile Systems: Strategic (Agni, Prithvi) and tactical (Akash, BrahMos).

Kamaraj IAS Academy

Plot A P.127, AF block, 6 th street, 11th Main Rd, Shanthi Colony, Anna Nagar, Chennai, Tamil Nadu 600040

Phone: 044 4353 9988 / 98403 94477 / Whatsapp: 09710729833

- Combat Aircraft: LCA Tejas.
- Naval Systems: Sonars (Humsa, Mihir), torpedoes, and submarine technologies.
- Defense Electronics: Radars, electronic warfare systems, communication systems.

Way Forward for DRDO:

- 1. **Talent Management**: Improve merit-based pay, career growth opportunities, and higher studies sponsorship to retain scientists.
- 2. Academia Collaboration: Increase joint R&D, academic partnerships, and industry-sponsored projects.
- 3. **Defense PSU Reforms**: Strengthen partnerships with private firms, boost R&D investment, and enhance competitiveness.
- 4. **Startup Ecosystem**: Support defense startups through initiatives like iDEX, DIStAC, with funding, infrastructure access, and relaxed procurement norms.

DRDO plays a crucial role in India's pursuit of self-reliance in defense technologies. With proper strategy, investment, and collaboration, DRDO can overcome its challenges and contribute significantly to India's defense autonomy and global standing in defense technologies.